3. PUMP

■ NPSHR NET POSITIVE SUCTION HEAD REQUIRED PUMP MFR CASING DIMENSION, IMPELLER INLET TYPE, IMPELLER DESIGN , PUMP FLOW , ROTATIONAL SPEED , LIQUID . PERFORMANCE CURVE NPSHR PLOTTING . PUMP**가** $RPM \propto NPSH^{0.75}$ 가 SUCTION HEAD 가 RPM CRITICAL SUCTION HEAD 가 SYSTEM RPM PUMP ■ NPSHA NET POSITIVE SUCTION HEAD LIQUID VAPOR PRESSURE NPSHA CAVITATION PUMP . NPSHA가 PUMP SUCTION LIQUID FLOW VAPORIZING VAPOR BUBBLE PUMP CAVITATION PERFORMANCE NOISE ERROSION PUMP DESIGN PUMP SUCTION HEAD VENDOR NPSHR 2 FEET NPSH SUCTION PIPING SYSTEM PLUGGING NONCONDENSIBLE GAS 가 PUMP SUCTION LIQUID LEVEL, PRESSURE HUNTING SUCTION HEAD PIPING LAYOUT SUCTION VESSEL VORTEXING ENTRAINED GAS 가 PUMP NOZZLE SIZE $NPSHA = h_a - h_{vpa} + h_{st} - h_{fs}$ NPSHA ha = absolute pressure on suction liquid surface , hvpa = LIQUID VAPOR PRESSURE , hst = SUCTION LEVEL STATIC HEAD , hfs = SUCTION NOZZLE

■ DISCHARGE HEAD

FRICTION HEAD LOSS .

PUMP DISCHARGE NOZZLE TOTAL HEAD DISCHARGE FRICTION
HEAD DISCHARGE VESSEL , CONTROL VALVE , DISCHARGE EXIT LOSS

PUMP CENTER LINE

☐ DIFFERENTIAL HEAD

PUMP HEAD SP.GR DATA 7 PRESSURE 7

.

■ SPECIFIC SPEED

IMPELLER SPECIFIC SPEED SUCTION SPECIFIC SPEED 가 . .

■ IMPELLER SPECIFIC SPEED

1 GALLON LIQUID 1 FEET HEAD SPEED

IMPELLER TYPE INDEX HEAD ,

CAPACITY, SUCTION CONDITION, SPEED IMPELLER DESIGN

 $N_{s} = \frac{rpm \cdot \sqrt{gpm}}{H^{\frac{3}{4}}}$

HEAD 가 SUCTION HEAD 가 SPECIFIC SPEED 가 IMPELLER

HEAD 가 NPSHR SPECIFIC SPEED 가 IMPELLER

. SPECIFIC SPEED IMPELLER PUMP SELECTION

BELOW 4,000 - CENTRIFUGAL OR RADIAL TYPE

BETWEEN 4.000 AND 9.000 - MIXED FLOW

ABOVE 9,000 - AXIAL FLOW

SPECIFIC SPEED 가 PROCESS NEED MINIMUM SUCTION HEAD

가

■ SUCTION SPECIFIC SPEED

SUCTION CAPABILITY IMPELLER DESIGN PARAMETER

 $S = \frac{\text{rpm}\sqrt{\text{gpm}}}{\text{NDSHP}^{\frac{3}{4}}}$

S

NPSHR . RANGE 3,000 ~ 20,000

IMPELLER DESIGN, SPEED, CAPACITY, LIQUID CAVITATION

. HYDROCARBON PUMP 15,000

7,000 ~ 12,000 가

☐ RELATIONS BETWEEN HEAD , HORSEPOWER , CAPACITY , SPEED

BRAKE HORSEPOWER INPUT AT PUMP

 $BHP = Q \cdot H \cdot (SP.GR) / 3960 \cdot e$

IMPELLER DIAMETER

RANGE

OPERATING

가

MAX BRAKE HORSEPOWER

BHP(MAX) = 1.18 · BHP(AT MAXIMUM EFFICIENCY POINT)

DRIVER HORSEPOWER

PUMP

DRIVER INPUT

HORSEPOWER ナ PUMP ナ

BHP

. COUPLING LOSS , V-BELT , DRIVER

LOSS

AFFINITY LAWS

1. IMPELLER SIZE EFFICIENCY

SPEED

, HEAD , BHP

$$Q_2 = Q_1 \left(\frac{n_2}{n_1}\right), H_2 = H_1 \left(\frac{n_2}{n_1}\right)^2, (BHP)_2 = (BHP)_1 \left(\frac{n_2}{n_1}\right)^3$$

SPEED

가

1.5

, HEAD , BHP

$$Q_2 = Q_1 \left(\frac{d_2}{d_1}\right), H_2 = H_1 \left(\frac{d_2}{d_1}\right)^2, (BHP)_2 = (BHP)_1 \left(\frac{d_2}{d_1}\right)$$

IMPELLER SIZE

가 20%

☐ TEMPERATURE RISE AND MINIMUM FLOW

PUMP ナ

SHUT OFF

FLOW **가**

PUMP SUCTION

RETURN FLOW

가

가

SUCTION

가

SUCTION CONDITION

PUMP

HARDWARF

DAMAGE

가

MINIMUM FLOW

1. TEMPERATURE RISE IN AVERAGE PUMP DURING OPERATION

$$\Delta T = \frac{(1 - e) \cdot H}{778 \cdot C_P \cdot e}$$

2. TEMPERATURE RISE AT SHUT OFF

Temp. rise (F / min) =
$$\frac{BHP \text{ at shut off } \cdot 42.4}{\text{weight of liquid in pump } \cdot C_P}$$

3. MINIMUM FLOW

5 STEP

STEP 1 : NPSH

STEP 2: NPSH + VAPOR PRESSURE AT SUCTION CONDITION

VAPOR

PRESSURE 가

(T2)

STEP 3: ALLOWABLE TEMPERATURE RISE = T2 - ACTURAL PUMPING TEMPERATURE.

STEP 4: MINIMUM SAFE CONTINUOUS FLOW EFFICIENCY

H at shut off from curve $\overline{778 \cdot \text{Dt} \cdot \text{C}_{\text{P}} + \text{H at shut off}}$

STEP 5 : PERFORMANCE CURVE STEP4 EFFICIENCY

FLOW

[]