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Only Greenberger-Horne-Zeilinger and W states are well known to have genuine tripartite en-
tanglement in all three qubit states. The entanglement of quantum state is also well known to
play an important role in various quantum information processes. Then, the following question
naturally arises: which one is better between the Greenberger-Horne-Zeilinger and the W states in
real quantum information processing? We try to give an answer to this question from two aspects.
First, we compute the induced bipartite entanglement for a mixture consisting of Greenberger-
Horne-Zeilinger and W states. If the entanglement is the only physical resource for information
processing, the induced bipartite entanglement suggests that Greenberger-Horne-Zeilinger and W
states are equally good. Second, we choose the bipartite teleportation scheme as an example of
quantum information processing using the mixture as a quantum channel and compute the average
fidelities. Our calculation shows that the W state is slightly more robust than the Greenberger-
Horne-Zeilinger state when a small perturbation disturbs the teleportation process. This slight
discrepancy seems to imply that entanglement is not the only resource for quantum information
processing.
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I. INTRODUCTION

Recently, there has been a flurry of activity in the en-
tanglement of the quantum states [1]. It seems to be a
genuine physical resource for various forms of quantum
information processing (QIP). For example, it allows a
quantum computer to outperform a classical one [2]. It
also plays an important role in other branches of physics.
For example, entanglement may provide a promising ap-
proach to understanding the information-loss problem
in black-hole physics. The entanglement between matter
and gravity [3] may provide some clues for solving the
various difficulties arising in black-hole physics. There-
fore, understanding the general properties of the quan-
tum entanglement in the context of quantum information
theories is very important [4].

The quantum entanglement for the two-qubit states is
well understood, regardless of their being pure or mixed
states. For example, for any two-qubit pure states, the
entanglement of the formation E [5] and the Groverian

measure G [6], two of the basic entanglement measures,
can be computed from the concurrence C by using the
formulae

E(ψ) = h

(
1 +

√
1− C2(ψ)
2

)
,

G(ψ) =
1√
2

[
1−

√
1− C2(ψ)

]1/2

, (1)

where h(x) ≡ −x log2 x−(1−x) log2(1−x). For the two-
qubit state |ψ〉 =

∑1
i,j=0 aij |ij〉, the concurrence C(ψ)

becomes

C(ψ) = 2|a00a11 − a01a10|. (2)

Thus, it is maximal for Bell states and vanishes for fac-
torized states. Combining Eqs. (1) and (2), one can com-
pute the entanglement of the formation and the Grove-
rian measure for all two-qubit pure states.

The entanglement for the mixed states is, in general,
-5-
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defined by the convex roof construction [7,8]1. For ex-
ample, the concurrence for the two-qubit mixed state ρ
is defined as

C(ρ) = min
∑

i

piC(ρi), (3)

where the minimum is taken over all possible ensembles
of the pure states. The ensemble that gives the minimum
value in Eq. (3) is called the optimal decomposition of
the mixed state ρ. About ten years ago, Wootters et
al. [10,11] showed how to construct optimal ensembles
for arbitrary two-qubit mixed states by considering the
time-reversal operation of spin-1/2 particles. Making use
of these optimal decompositions, one can compute the
concurrence analytically for all two-qubit states by using
the simple formula

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (4)

where the λi’s are eigenvalues, in decreasing order, of the
Hermitian matrix√√

ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)
√
ρ.

Note that E(ψ) and G(ψ) in Eq. (1) are monotonic func-
tions with respect to C(ψ). This fact indicates that the
optimal decompositions for the entanglement of the for-
mation and the Groverian measure are the same as that
for the concurrence. Thus, one can compute E , G, and
C for all two-qubit states, regardless of their being pure
or mixed.

Recently, E , G, and C for the various mixed states
arising in the teleportation process through noisy chan-
nels were explicitly computed [12]. Due to noises, the
sender, Alice, cannot send the single-qubit state |ψin〉 to
the receiver, Bob, perfectly. If Bob receives ρout, one
can compute F ≡ 〈ψin|ρout|ψin〉, which measures how
well the teleportation job is performed. It is shown in
Ref. 12 that the mixed states entanglements E , G, and C
all vanish when the average of F , say F̄ , is less than 2/3,
which corresponds to the best possible score when Alice
and Bob communicate with each other through a classi-
cal channel [13]. This fact implies that the mixed state
entanglement is a genuine physical resource for telepor-
tation through noisy channels.

Is the entanglement the only physical resource respon-
sible for the QIP? The purpose of this paper is to exam-
ine this question carefully. To explore this issue, we use
the fact that quantum teleportation can be prefectly im-
plemented not only by the two-qubit Bell state but also
by the following Greenberger-Horne-Zeilinger (GHZ) [14]

1 For the Groverian measure of mixed states, there is an entan-
glement monotone, which does not follow the convex roof con-
struction. See Ref. 9.

and W [15] states:

|ψGHZ〉 =
1√
2

(|000〉+ |111〉)

|ψW 〉 =
1
2

(
|100〉+ |010〉+

√
2|001〉

)
. (5)

If we consider the three-qubit mixture defined as

ρQC = p|ψGHZ〉〈ψGHZ |+ (1− p)|ψW 〉〈ψW |, (6)

this fact means that ρQC allows a perfect teleportation
when p = 0 and p = 1. Computing the induced bipartite
entanglement for ρQC and assuming that the bipartite
entanglement is the only resource for the QIP, we will
predict which one is better between |ψGHZ〉 and |ψW 〉 if
they are used as a channel for the real QIP. Next, we will
choose the bipartite teleportation process as an example
of the real QIP. Computing the average fidelities when
the teleportation process is implemented using ρQC as a
quantum channel, we conclude again which one is more
robust in the teleportation process. If our prediction de-
rived from the induced bipartite entanglement and our
conclusion derived from the explicit calculation in the
teleportation process coincide with each other, then the
bipartite entanglement is the only physical resource re-
sponsible for the teleportation.

This paper is organized as follows: In Section II, we
would like to briefly review the three-tangle and its op-
timal decomposition for the mixture ρQC . In that sec-
tion, we compute three-tangle, two-tangle, and induced
bipartite entanglement explicitly for ρQC that we will
use in the teleportation process. The calculation of the
induced bipartite entanglement enables us to understand
why |ψGHZ〉 and |ψW 〉 allow perfect quantum teleporta-
tion. It also suggests that |ψGHZ〉 and |ψW 〉 are equally
good if the entanglement is the only resource for the QIP.
In Section III, we compute the average fidelity, F̄GHZ ,
when a mixture consisting of unperturbed GHZ state
and small perturbed W state is used as a quantum chan-
nel in the teleportation process. In Section IV, we com-
pute the average fidelity, F̄W , when a mixture consisting
of an unperturbed W state and a small perturbed GHZ
state is used as a quantum channel in the teleportation
process. In Section V, we analyze the calculational re-
sults obtained in Sections III and IV and conclude that
the W state is more robust than the GHZ state when
a small perturbation disturbs the teleportation process.
This fact implies that the bipartite entanglement is not
the only physical resource for quantum information pro-
cessing.

II. THE THREE-TANGLE AND
COMPUTATION OF THE INDUCED

BIPARTITE ENTANGLEMENT

For the three-qubit pure state ρABC , the concurrences
CAC and CBC for the reduced states ρAC and ρBC satisfy
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the following inequality [16]:

C2
AC + C2

BC ≤ C2
(AB)C , (7)

where C(AB)C is a concurrence between the pair AB and
the qubit C. The difference between the right- and left-
hand sides in Eq. (7) is defined as a three-tangle or resid-
ual entanglement:

τABC ≡ C2
(AB)C −

(
C2

AC + C2
BC

)
. (8)

For the state |ψ〉 =
∑1

i,j,k=0 aijk|ijk〉, τABC becomes
[16]

τABC = 4|d1 − 2d2 + 4d3|, (9)

where

d1 = a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

100a
2
011,

d2 = a000a111a011a100 + a000a111a101a010

+a000a111a110a001 + a011a100a101a010

+a011a100a110a001 + a101a010a110a001,

d3 = a000a110a101a011 + a111a001a010a100. (10)

Thus, the generalized GHZ and W states defined as

|GHZ〉 = a|000〉+ b|111〉
|W 〉 = c|001〉+ d|010〉+ f |100〉 (11)

have

τGHZ
3 = 4|a2b2| τW

3 = 0. (12)

For the mixed three-qubit state ρ, the three-tangle is
defined by

τ3(ρ) = min
∑

j

pjτ3(ρj), (13)

where the minimum is taken over all possible ensembles
of the pure states. Thus, we should construct the optimal
decomposition to compute Eq. (13). The construction
of the optimal decompositions for arbitrary three-qubit

mixed states is a highly nontrivial and formidable job
and is yet unsolved. However, for the mixture of GHZ
and W states given by

ρ(p) = p|GHZ〉〈GHZ|+ (1− p)|W 〉〈W |, (14)

the optimal decomposition was explicitly constructed in
Refs. 17 and 18. The expression for the three-tangle for
ρ(p) is

τ3(ρ(p)) =

 0 for 0 ≤ p ≤ p0

τ3(p) for p0 ≤ p ≤ p1

τ conv
3 (p) for p1 ≤ p ≤ 1,

(15)

where s = 4cdf/a2b and

p0 =
s2/3

1 + s2/3
, p1 = max

(
p0,

1
2

+
1

2
√

1 + s2

)
. (16)

In Eq. (15), τ3(p) and τ conv
3 (p) are given by

τ3(p) = τGHZ
3 |p2 −

√
p(1− p)3s|,

τ conv
3 (p) = τGHZ

3

[
p− p1

1− p1
+

1− p

1− p1
(p2

1

−
√
p1(1− p1)3s)

]
. (17)

As we mentioned in the previous section, we will con-
sider in this paper the quantum teleportation with a
quantum channel ρQC defined in Eq. (6). Comparing
Eq. (14) with Eq. (6), we have a = b = c = 1/

√
2 and

d = f = 1/2, which give

s = 2, τGHZ
3 = 1,

p0 =
22/3

1 + 22/3
∼ 0.614,

p1 =
1 +

√
5

2
√

5
∼ 0.724. (18)

Thus, the three-tangle for ρQC becomes

τ3(ρQC) =


0 for 0 ≤ p ≤ p0

|p2 − 2
√
p(1− p)3| for p0 ≤ p ≤ p1

1
1−p1

[(1− t1)p− (p1 − t1)] for p1 ≤ p ≤ 1,
(19)

where t1 ≡ p2
1−2

√
p1(1− p1)3 ∼ 0.276. Since it is simple

to derive the reduced states from ρQC , one can easily
compute the concurrences CAB , CAC , and CBC by using

Wootters’ procedure [10,11], whose explicit expressions
are
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CAB =
{ 1−p−2

√
p

2 for 0 ≤ p ≤ 3− 2
√

2
0 for 3− 2

√
2 ≤ p ≤ 1,

(20)

CAC = CBC =

{
1√
2

[
(1− p)−

√
p(1 + p)

]
for 0 ≤ p ≤ 1

3

0 for 1
3 ≤ p ≤ 1.

The induced bipartite entanglement C(AB)C between
the bipartite AB and C is defined as 4 min detρC , where
the minimization is taken over all possible ensembles of
ρC . It is straightforward to show that the optimal de-
composition for C(AB)C is

ρQC =
1
2
|Y (0)〉〈Y (0)|+ 1

2
|Y (π)〉〈Y (π)|, (21)

where

|Y (θ)〉 =
√
p|ψGHZ〉 −

√
1− peiθ|ψW 〉; (22)

thus, the induced bipartite entanglement for ρQC reduces
to2

C(AB)C = 1− p+ p2. (23)

The p-dependence of C(AB)C is plotted in Fig. 1. The
two-tangle C2

AC + C2
BC and the three-tangle τ3(ρQC) are

plotted together. It is easy to show from the figure
that the Coffman-Kundu-Wootters inequality, Eq. (7),
is satisfied in this mixture. This figure also shows that
C(AB)C = 1 at p = 0 and p = 1, which indicates that
pure GHZ and pure W states are maximally entangled.
This fact implies that the two-party teleportation with
p = 0 and p = 1 states should be perfect. This will be
confirmed in the next two sections by showing that the
average fidelity, F̄ , becomes 1 at these points.

It is worthwhile noting that the induced bipartite en-
tanglement C(AB)C is symmetric with respect to p = 1/2
line. If the entanglement is the only physical resource
for the real QIP, this strongly suggests that GHZ and W
states are equally good when they are used as quantum
channels in the QIP. From next sections, we will choose
quantum teleportation as an example of the real QIP and
try to check whether or not our prediction is correct.

2 If |ψGHZ〉 and |ψW 〉 are replaced with the generalized states
|GHZ〉 and |W 〉 defined by Eq. (11) in the mixture ρQC , the
one-tangle C(AB)C becomes

4min detρC = 4
[
pa2 + (1− p)(d2 + f2)

] [
pb2 + (1− p)c2

]
− 4p(1− p)a2c2.

One can show easily that this reduces to (1/9)(5p2−4p+8) when
a = b = 1/

√
2 and c = d = f = 1/

√
3, which exactly coincides

with Eq. (15) of Ref. 17.

Fig. 1. Plot of the p-dependence of C(AB)C , C2
AC+C2

BC , and

τ3(ρ
QC). From this figure, one can show that the Coffman-

Kundu-Wootters inequality C(AB)C ≥ C2
AC + C2

BC is satisfied.
The fact that C(AB)C = 1 at p = 0 and p = 1 implies that
pure GHZ and pure W states are maximally entangled.

III. QUANTUM TELEPORTATION WITH A
LARGE-P STATE

Fig. 2. Quantum circuit for quantum teleportation
through noisy channels with a GHZ state. The top three
lines belong to Alice while the bottom line belongs to Bob.
The dotted box represents a small perturbation, which causes
the quantum channel to be mixed state.

In this section, we consider the quantum teleportation
with a mixed state ρQC given in Eq. (6) when p is large.
The state ρQC with large p can be regarded as a mixed
state that consists of a GHZ state plus a small perturbed
W state. Therefore, we use a teleportation scheme with
a GHZ state, whose quantum circuit is given in Fig. 2.
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Now, we assume that the sender, Alice, who has the
first two qubits in ρQC , wants to send a single qubit

|ψin〉 = cos
(
θ

2

)
eiφ/2|0〉+ sin

(
θ

2

)
e−iφ/2|1〉 (24)

to the receiver, Bob, who has the last qubit in ρQC .
Then, Fig. 2 implies that the state ρout, which Bob has
finally, becomes

ρout = |ψout〉〈ψout| = Tr1,2,3

[
UGHZ

(
ρin ⊗ ρQC

)
, U†GHZ

]
(25)

where Tr1,2,3 is the partial trace over Alice’s qubits and
ρin = |ψin〉〈ψin|. The unitary operator UGHZ can be
read directly from Fig. 2, and its explicit expression is

UGHZ =
1√
2



1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0



. (26)

Fig. 3. Quantum circuit for quantum teleportation
through noisy channels with a W state. The top three lines
belong to Alice while the bottom line belongs to Bob. The
dotted box represents a small perturbation, which causes the
quantum channel to be mixed state. The unitary operator Ũ
makes |ψ̃W 〉 coincide with |ψ̃GHZ〉 in Fig. 2.

Inserting Eq. (6), Eq. (24), and Eq. (26) into Eq. (25),
one can compute ρout straightforwardly.

In order to quantify how much information is preserved
or lost during this teleportation scheme, we consider a
quantity

F (θ, φ) = 〈ψin|ρout|ψin〉, (27)

which is the square of the usual fidelity defined as

F (ρ, σ) = Tr
√
ρ1/2σρ1/2. Thus, F = 1 implies the per-

fect teleportation. For our case FGHZ(θ, φ) becomes

FGHZ(θ, φ) =
1
8

[(3 + 5p)− (1− p) cos(2θ)] . (28)

When p = 1, FGHZ becomes one. This means that the
state |ψGHZ〉 allows perfect teleportation.

Now we define the average fidelity3 in the form

F̄ ≡ 1
4π

∫ 2π

0

dφ

∫ π

0

dθ sin θF (θ, φ). (29)

For our case, the average fidelity F̄GHZ becomes

F̄GHZ =
5 + 7p

12
. (30)

When p = 1, F̄GHZ becomes one again.

3 Although the correct terminology is “average of the square of the
fidelity”, we will use “average fidelity” for simplicity throughout
this paper
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IV. QUANTUM TELEPORTATION WITH A
SMALL-P STATE

Since the state ρQC in Eq. (6) with small p can be
regarded as a mixed state that consists of a W state
plus a small perturbed GHZ state, we use a teleportation
scheme with a pure W states. The quantum circuit for
this scheme is given in Fig. 3. In this figure, the unitary
operator Ũ is introduced to make |ψ̃W 〉 be the same as
|ψ̃GHZ〉 in Fig. 2. The explicit expression of Ũ is given
in Eq. (3.1) of Ref. 19.

The final state ρout, which Bob has in this teleporta-
tion process, becomes

ρout = |ψout〉〈ψout| = Tr1,2,3

[
UW

(
ρin ⊗ ρQC

)
U†W

]
,

(31)

where Tr1,2,3 is the partial trace over Alice’s qubits and
ρin = |ψin〉〈ψin|. The explicit expression of UW can be
read directly from Fig. 3 in the form

UW =
1
2



0 0 1 0 1 0 0 0
√

2 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0

√
2 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0

√
2 0 0 0 0 0 0 0 0 0 1 0 1 0 0√

2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 1 0 1 0 0 0 −

√
2 0 0 0 0 0 0 0

0 0 0 −1 0 −1 0 0 0
√

2 0 0 0 0 0 0
0 0 0

√
2 0 −

√
2 0 0 0 0 0 0 0 0 0 0

0 0 −
√

2 0
√

2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

√
2 0 −

√
2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −
√

2 0
√

2 0 0
0

√
2 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0

−
√

2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0



. (32)

Inserting Eq. (6), Eq. (24), and Eq. (32) into Eq. (31),
one can compute FW (θ, φ) and F̄W straightforwardly. It
is shown that FW (θ, φ) is independent of the angle pa-
rameters. Thus, FW (θ, φ) is the same as the average
fidelity F̄W in the form

F̄W = FW (θ, φ) = 1− p

2
. (33)

When p = 0, F̄W becomes one, which indicates that the
state |ψW 〉 allows perfect teleportation.

V. DISCUSSION

We have discussed the quantum teleportation scheme
using ρQC as a quantum channel. When p = 0 and p = 1,
teleportation with the corresponding states is well known
to be perfectly implemented. This is confirmed from the
fact that the correlation between Alice and Bob, C(AB)C ,
becomes maximal at p = 0 and p = 1. When the telepor-
tation scheme with a GHZ state plus small a perturbed
W state is taken into account, the average fidelity of the

teleportation process becomes F̄GHZ = (5 + 7p)/12. As
expected, it shows a decreasing behavior with decreas-
ing p from 1. At p = 1/2, where the correlation between
Alice and Bob is minimized, F̄GHZ becomes 17/24. In
the teleportation scheme with a W state plus a small
perturbed GHZ state, the corresponding average fidelity
reduces to F̄W = 1− p/2. As expected, it also exhibits a
decreasing behavior with increasing p from 0. At p = 1/2
F̄W becomes 3/4, which is slightly larger than 17/24.
This fact indicates that the teleportation scheme based
on a W state is more robust against small perturbations.
This robustness of the W state can be concluded again
from the following argument. Our result shows that
F̄W ≥ F̄GHZ in the region 0 ≤ p ≤ p∗ = 7/13 ∼ 0.538.
Because p∗ > 1/2, this means that ρQC can be regarded
as a W state with a perturbed GHZ state in the wider
range of p. In this aspect, we can conclude again that
a W state is more robust than a GHZ state against a
perturbed interaction.

It is worthwhile noting that F̄GHZ and F̄W are not
symmetric to each other with respect to the p = 1/2 line
while the induced bipartite entanglement is symmetric.
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This fact seems to indicate that the induced bipartite en-
tanglement is not the only physical resource responsible
for the teleportation process. Probably, the robustness
for the W state is due to our choice of the bipartite tele-
portation scheme as an example of real QIP. We may
have arrived at a different conclusion if we had chosen
a different example of QIP. At least, however, we can
assert that there are additional physical resources that
affect real QIP. Thus, it is important to understand the
additional resources to exploit various forms of QIP, such
as quantum computers and quantum cryptography, in fu-
ture technology. We would like to re-visit this issue in
the future.
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