Overview of the Full Scale Durability Tests on F-35 Lightning II Program

Marguerite E. Christian Senior Manager Structures Test

F-35 Structures Development Lockheed Martin Aeronautics Company

2012 Aircraft Structural Integrity Program (ASIP) Conference November 27-29, 2012 San Antonio, TX

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Acknowledgements

- Bob Burt, Co-Author, Director, F-35 Structures Development Team
- Joe Yates, Co-Author, Senior Manager, F-35 Service Life Analysis
- Phil Gross, Director and Chief Structures Engineer, Deputy for F-35 Structures Development Team
- Don Whiteley, Technical Lead for Durability Tests, F-35 Structures Test
- Kirsten Adams, Horizontal Tail Component Test Lead, F-35 Structures Test
- Keith Jackson, Vertical Tail Component Test Lead, F-35 Structures Test
- Josh Martin, CV Variant Chief, F-35 Structures Test
- Jeremy Morrison, STOVL Variant Chief, F-35 Structures Test

Tri-Variant Joint Strike Fighter (JSF)

F-35A CTOL

Span	35 ft / 10.67 m
Length	51.4 ft / 15.67 m
Wing area	\dots 460 ft ² / 42.7 m ²
Combat radius (internal fue	el) >590 n.mi / 1,093 km
Range (internal fuel)	~1,200 n.mi / 2,222 km

F-35B STOVL

Span	35 ft / 10.67 m
Length	51.2 ft / 15.61 m
Wing area	460 ft ² / 42.7 m ²
Combat radius (internal fuel)	>450 n.mi / 833 km
Range (internal fuel)	~900 n.mi / 1,667 km

F-35C CV

Span
Length
Wing area
Combat radius (internal fuel) >600 n.mi / 1,111 km
Range (internal fuel) >1,200 n.mi / 2,222 km

F-35 Full Scale Tests and How They Relate to ASIP

	sign Analysis &
Information De	evelopment Test
Task I	Task II
ATP - PDR	ATP - CDR
ASIP Master Plan	Mat'l and Joint
AI	lowables Testing
Design Service Life	Loads Analysis
& Design Usage	Louds Analysis
	Design Service
	Loads Spectra
Criteria	hemical/Thermal
	Environment
Damage Tolerance And Durability	Spectra
-	ructural Analyses
	Stress & DADT
Corrosion	Sonic Fatigue
Prevention	Vibration
& Control Program	Survivability
	•
Nondestructive	Corrosion
Inspection Program	Assessment
Selection of	lass Properties
Materials,	Analysis
Processes and	Design
	evelopment Tests
J	-
	Prod. NDI Capability
	Assessment

lysis & nt Test	Full Scale Testing Task III	Certification & Force Mgmt Development	Force Management
II DR	CDR-LRIP	Task IV Late SDD - FRP	Task V On-Going
Joint Festing	Static Tests	Certification Analyses	Individual Aircraft Tracking Program
Ilysis rvice ectra	First Flight Verification Ground Tests	Strength Summary & Operating Restrictions	Loads/Environment Spectra Survey ASIP Manual
hermal hent a halyses	Flight Tests	Force Structural Maintenance Plan Loads/Environment	Aircraft Structural Records
DADT igue on elastic bility	Durability Tests	Spectra Survey Development Individual Aircraft Tracking Program	Force Management Updates Recertification
on lent erties is	Damage Tolerance Tests	Development	
n It Tests	Climatic Tests		
DI ity ient	Interpretation and Evaluation of Test Results		

F-35 Full Airframe Tests Locations & Fixture Sharing

Vought Aircraft Industries,

Grand Prairie TX, US

CV Drop

Drop Test Aircraft Also Serves as Test Article for CV Static, Barricade and Live Fire Tests

Full Scale Durability Test Development

- Durability Test Program Builds Upon Static Test
 - Using Same Fixture
 - Same Load Control and Data Acquisition Systems
 - Minor Differences in Load Arrangement
- Some Differences Between Static and Durability Tests
 - Leading Edge Flaps Move Under Load
 - LH and RH "Dummy" Vertical Tails
 - Vertical Tails Tested As Separate Components

Installation of CV Durability Test Article in Test Fixture

Multiple Usage of F-35 Full Airframe Test Fixtures

- Dedicated Test Fixture for CTOL Durability Test Article
 - Enabled Test to Start Upon
 Delivery of Test Article

F-35 Horizontal Tail Component Tests Locations & Fixture Sharing

Two Common Rig Designs - Interchangeable for Each Aircraft Variant for Both Static and Durability Tests

F-35 Vertical Tail Component Tests Locations & Fixture Sharing

Three VT Durability Test Articles, One Per Variant

Performed at BAES in Brough, UK

- One Maneuver Test Rig
- Built to Accommodate All Three Variants

- Two Buffet/Vibration Test Rigs
- Built to Accommodate All Three Variants

F-35 Durability Test Program

- Test Articles Representative of Production Build
 - Omitted Subsystems and Final Finishes
- Tests Conducted with Test Spectrum for Two Lifetimes to Ensure 90% of Aircraft Achieve 8000 Hour Life
 - Maneuver, Catapults/Arrestments (CV Only) and Buffet Loads Applied as Separate, Alternating 1000 hr Blocks During the Major Test Sequence
 - Buffet Loads Applied Quasi Statically, Except for Vertical Tail Components
- Local Tests Planned for Execution Between First and Second Lifetimes
 - Portion of CTOL and STOVL Local Tests Pulled Forward Due to Major Test Finding on FS 496 Bulkhead
- Approval Received to Perform Third Lifetime on HTs, VTs and Full Airframe Test Articles
- Teardown Planned at End of Three Lifetimes

F-35 Durability Test Status

Durability Testing Progress

Continued Improvement Recognized in Test Performance

Loose Fasteners on Lower Aft Access Panels – CTOL and STOVL

R/H

Outbd

asteners rotated early in testing

- Loose Fasteners in Lower Aft Covers Discovered Shortly After Test Began
 - Similar Results on Both F-35A and F-35B
 - No fastener failures to date on F-35C
- Fasteners on F-35A and F-35B RHS Replaced
- Evaluation of Potential Modifications Ongoing
- No Evidence of Fastener Rotation on Flying A/C

CTOL Wing Forward Root Rib

- Stiffener Crack Found at 2,117 Hours
- Lower Flange Crack Found at 5,089 Hours
- Declared Short Life Pre-Test
- Test Continued to 8,000 Hours
 - Crack Growth Monitored by Strain Gage Responses and Periodic Inspections
- Similar Crack Location and Geometry on LHS

Crack traces

•

CTOL Engine Thrust Mount Shear Web

2012/02/08 11 16

- Shear Web Crack at 3,000 Hours
 - Initiation at Radius of Upper Flange
 Transition
- Test Continued to 8,000 Hours
 - Anomaly Monitored by Trending
 Strain Data and Periodic
 Inspections
- Similar Crack Discovered on LHS at 7,000 Hours
- Root Cause: Stress Concentration at Radius

OLYMPUS

Crack location

CV Durability Test Findings

STOVL FS 496 Bulkhead

stack in lower surface of i

RHS. LKG FWD

FS 496 Bulkhead Repair (LH) View Looking Up and Aft

- Cracks Discovered at 1,471 Maneuver Hours, Initiating at MLG Trunnion Radius
- Excised LH and RH Bulkhead Segments Outboard of BL60 and Replaced With
 - Production Redesign Geometry, LHS
 - SDD/LRIP Repair Geometry, RHS
- CTOL and CV Durability Test Articles Required Trunnion Blend

STOVL Nose Landing Gear Retract Actuator Backup

- Clevis Failed at 7,182 Hours
 - Root Cause: Bore Scratched During Bushing Install
- Clevis Replaced (Integral to Fuel Floor) and Test Re-started at Zero Hours
- Stiffeners Cracked (Through Thickness) at 9,878 Hours
 - Root Cause: Stress
 Concentration at Fillet Radius
 - LH Stiffener Repaired with Angle Brackets
 - Performed Trim of RH Stiffener Crack
- Second Failure of Clevis at 12,965 Hours
 - Root Cause: High Stress Concentrations due to Load Peaking
- Re-designs and Modifications Required for Production Aircraft (Increase Radius)
- CTOL and CV NLG Retract Actuator Lug Configurations are Significantly Different

STOVL Wing Pylon Aft Ribs

JA

View Looking Inboard and Up (Station 3 – LH)

- Cracks Discovered in Station 3 (LH) Aft Rib at 5,000 Hours and Station 9 (RH) Aft Rib at 6,000 Hours
 - Both are Known Short Life Locations; Crack Geometry and Timing as Predicted
 - Cracks Stop Drilled at 6,000 Hours
 - External Straps Installed (LH and RH) at 7,000 Hours
- Engineering for Modification and Re-designs for Production Aircraft Already Defined

View Looking Inboard and Up (Station 9 – RH)

٠

STOVL FS 472 Bulkhead

FS472 Bulkhead Cracked at 6,750 Maneuver Hours

- Crack is Through Thickness of Upper Flange
- Extends From Free Edge Aft to Web, then Outboard Along Web-to-Flange Radius
- Root Cause In Work
- Stop Drilled Crack Tip and Continued Testing
- **Further Actions Required at 8,000 Hours**

F-35 Durability Test Findings Vertical Tail-Rudder

CTOL	FS 575 Forward Shear Tie	Discovered premature wear on initial bushing configuration at 1,753 total hours. Replaced bushing with different material. Replaced slip bushings at 12,000 total hours. Modified configuration successfully cycled for 10,000 total hours, exceeding the 8,000 hour wear
	Rudder Base Bolt and Slip Bushing	requirement. Parts replaced at 12,000 total hours due to wear which affected test performance. Strength and functionality undiminished; no design change necessary for flying aircraft.
	Fixed Link Tie-Rod Assembly	Spherical bearing and liner worn without degradation to strength & functionality. Replaced at 7,500 total hours to improve testing performance.
	Rudder Hinge 3 Nut and Locking Washer	Determined to be nonfunctional at 12,000 total hours due to wear. Original installation exceeded wear requirement of 8,000 hours.
	Rudder Hinge 3 Pin	Excessive wear at 16,000 total hours, however maintained strength & functional capability throughout test.
STOVL	FS 575 Forward Shear Tie	Inspection performed at 562 total hours based upon findings at forward shear tie on CTOL VT test article. Consistent wear indications found on STOVL, therefore bushing configuration (material change) modified prior to continuing test. No subsequent hardware changes needed; successfully completed 2 lifetimes of durability testing.
	Rudder Hinge 2 Clevis	Rudder Slider Pin seized and gouged the VT-Box clevis at 1,000 total hours. Repaired with installation of wear washers and continued test.
CV	Rudder Hinge 4	Bearing liner and pin damaged during vibration surveys due to overtest (dynamic response 2.5 times greater than requirement). Hinge fitting and pin replaced and test continued with improved load control direction in place.
	Rudder V-Tip	Composite laminate damage caused by test fixture interference during maneuver loading during first 2,000 hours of testing. Rudder repaired and testing continued.

FS 575 Fwd Shear-Tie Bushing Wear CTOL Vertical Tail

- ForceMate: AL-Ni Bronze
- Slider: AL-Ni Bronze
- At 1,753 Hours Testing Exposure

Worn ForceMate Worn Slider Bushes

Sect B-B

Retro-Fit Bushing Material Configuration

- ForceMate: Nitronic 60 Grade C
- Slider: AL-Ni Bronze, molykote
- At 10,247 Hours Testing Exposure

Fwd Bush

© 2012 Lockheed Martin Corporation

Rudder V-Tip & Hinge 4 Damage CV Vertical Tail

Rudder Hinge 3 Lug

 Severe Over Excitation During Vibration Survey

Looking Down

 C-Beam Load Fixture Contacted Rudder Aft Edge (V-tip) During Maneuver Testing

View Looking Outboard

View Looking Inboard

LHS Vertical Tail

Hinge 4 Bolt

Looking

Up

F-35 Durability Test Findings Horizontal Tail

STOVL	Leading Edge Fasteners	Seven failed fasteners at Inboard Leading Edge discovered during 2 Lifetimes of testing (16,000 total hours).
	Bump Fairing Support Frame	Crack discovered during 12,000 hour planned inspection on fairing support frame.
CTOL	Leading Edge Fasteners	One fastener failed at Inboard Leading Edge attachment. Fastener rotations were minimal.
CIOL	Bump Fairing Support Frame	During 16,000 hour inspection, cracks detected on both forward and aft faces of the fairing support frame.
CV	Leading Edge Fasteners	Thirteen fasteners failed at Leading Edge attachment during 1 st Lifetime (8,000 total hours) of testing. Modification for test article engineered and installed prior to beginning 2 nd Lifetime.

CV HT Leading Edge Modification

CV HT (4DB6)

14 Fastener Failures During 1st LT (8000 flight hours) Testing, Along Leading Edge

- Modified Leading Edge After Completion of 1st Lifetime, 8000 Flight Hours
 - Increased Fastener Diameter to ¼ inch
 - Changed Fastener Material From Inconel to Titanium
 - Decreased Bolt to Hole Clearance
- Completed 3000 Flight Hours With Modified Configuration and No Fastener Failures

Outbd

Summary

- Concurrency of Full Scale Tests Present Unique Challenges and Opportunities
 - Multi Use of Test Fixtures for Static and Durability Full Airframe and Component Tests
 - Transfer of Lessons Learned Regarding Test Findings
- Continue to Improve Test Efficiencies and Schedule Performance
 - All Durability Tests Completed to Date Have Finished Ahead of Baseline, Except for STOVL VT Which Finished Per Baseline
- Maintaining Excellent Response Time in Test Finding Resolution
 - Provides Insight for Fleet Inspections
- Planning and Preparations for Third Lifetime Underway
 - CTOL HT 3rd Lifetime to Begin 1st Quarter 2013

Test Results Provide Confirmation of Structural Integrity of F-35 Lightning II Design

Questions?

